COTI V2 Documentation
  • Welcome
  • Networks
    • Faucet
    • Contracts Addresses
    • Adding the COTI Network to Metamask
  • How COTI Works
    • Introduction
      • EVM Introduction
      • Conceptual Overview
      • Use Cases and Applications
      • COTI Architecture
    • Advanced Topics
      • Garbled Circuits
      • AES Keys
      • Precompiles
      • Whitepaper
      • COTI vs others
  • Build on COTI
    • Core Concepts
      • Account Onboarding Procedure
      • Private Data Types
      • Supported Operations on Private Data Types
    • Quickstart
    • Guides
      • Basic Private Smart Contract
      • Account Onboard
      • Sending a Transaction with Encrypted Inputs
      • Resolving a Transaction's Encrypted Outputs
      • Writing a Private Smart Contract
      • Dos and Don'ts
        • Proper Use of Types
        • No Constant/Immutable Secret Types
        • No Public Contract Variables
      • Best Practices
        • Careful Onboarding
        • Careful Decrypting
        • Don't loop over an array without an index
        • Check Overflow
    • Tools
      • TypeScript SDK
      • Ethers.js
      • Python SDK
      • Web3.py
      • Contracts Library
        • MPC Core
        • Data Privacy Framework
        • Tokens
          • Private ERC20
          • Private ERC721
        • Onboard
      • Hardhat
      • Remix Plugin
      • COTI MetaMask Snap
      • Developer Sandbox
  • Running a COTI Node
    • COTI Node Ecosystem Litepaper
  • COTI Bridge
    • Swap COTI V1 Funds to COTI V2
  • Support and Community
    • Glossary
    • Telegram
    • Discord
    • GitHub
    • X
    • YouTube
  • COTI Builders Program
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Build on COTI
  2. Guides

Best Practices

As developers, it's crucial to adopt best practices that not only protect confidential information but also maintain the integrity of the confidential smart contracts. In this section, we'll explore key recommendations aimed at enhancing the security and efficiency of smart contracts handling confidential data. From understanding the implications of decryption to optimizing array access and safeguarding against arithmetic overflows, these best practices offer valuable insights into building robust and privacy-preserving smart contracts

PreviousNo Public Contract VariablesNextCareful Onboarding

Was this helpful?